Review of Common Ordinary Differential Equations

Additional Notes Summarized by Yourself N\ Separable Equations \
% Srf-nj 20/? ‘#3

dy

You can fill in this empty block to summarize the course contents that are not Separable Equations: —— = g(z)k(
listed in this file. dx Fodl 2019 #3
d rong 2018 W)
Solution: /WZ) :/ (x)dz + C ﬁa j

Also check if k(y) = 0 is a solution
L . dT
Applications: Newton’s law of cooling: o= kE(A-T)

apP
Logistic equations: P kP(M — P) = aP — bP?

\.

Linear First-order Equations tj Srn '\Jlol? e Sr"'j ETTREY: N\

Linear First-order Equations: ;L +P(x)y=Q(x)  TFall 200 #4

Foll 2015 H )
Solution: py = [ pQ(x)dxz, where p = el Plz)dz
Applications: Mixture Problems: d—I =71iC; — T'oCo,
Fall 20|18 #2. 2(t) ¢
- where ¢,(t) = —=, V(t) = Vo + (r; —rg) t
Exact Equations
M N
Exact Equations: M (z,y)dz + N(z,y)dy = 0, where oM = 8—
oy Ox
oF oF
Solution: F(z,y) = C such that — = M and — = N.
or oy

\.

Homogeneous Equations SI"MJ 2018 #S )

d
Homogeneous Equations: d—y =F (g) Foll 2008 #4
x

x
To identify: All z™y™ have total power (n + m) the same (after
rewriting).
d d
Solution: Substitute v = =, then A +z Y
x’ dz dx

(This converts equation to a separable Diff. E.)




Bernoulli Equations \

: Foll 2ol 6
Y py = 0

Bernoulli Equations:

Rewrite: y~ "y + P(x)y' ™" = Q(x)

1

y' " =vandy "y = —v
1—n

(This converts equation to a linear Diff. E.)

Reducible Second-order Equations <

Reducible Second-order Equations: F (z,y,3'y”) =0

Solution: !

d d
Case 1. y missing: Substitute: p =3’ = —y, n— 2P
dx dx
d d
Case 2. r missing: Substitute: p =1y’ = —y, R
dx dy

Population Models N\

This topic was covered in Section 2.1. We talked about
e Solving the Logistic Equations.
e How solution curves behave near the equilibrium solutions

See illustrative examples from Lecture Notes Section 2.1.

r
\.

Acceleration-Velocity Models N

This topic was covered in Section 2.3. See the lecture notes and homework ques-
tions for examples.

Autonomous Equations and Equilibrium Solutions

dx (@)

S,)v\'v\j 20(g #8

Fall 2019 #2

Fall 2018 #7
values of x such that f(x) = 0. Fall 2017 #|

f (zo) = 0 = equilibrium solution at = xg
f (z0) < 0 = solutions go down at x = xq Sf{}w 20)5

f (x0) > 0 = solutions go up at x = xg Sf’:“ sor]4
Phase diagram method

unstable = solutions go away (either side)
stable = solutions go towards (both sides)
semi-stable = solutions mixed

Autonomous Equations: P

Critical points:

Stability of Critical Points:

r
\

Foll 209 # 7 Fall 20i8 #¢ ‘

d
Euler’s Method: Consider ﬁ = f(z,y), f(z0) =10
Tp4+1 = Tn + h
Yn+1 =Yn + - f(Tn,yn)

.
Existence and Uniqueness Theorem

First Order, General Initial Value Problem:

Euler’s method with step size h: {

EJ: Srn‘rﬁm/‘f #1

y/ = f('ra y)7 y(To) =%

e Solution exists and is unique if f and a% f are continuous at (o, yo)-

e Solutions are defined somewhere inside the region containing (xq, yo), where
f and a@ f are continuous.
y

\. J

Linearly Independent Functions \

fi, -+, fn are linearly independent if ¢ f1 + -+ 4+ ¢, fn =0
holds if and only if ¢y = co =+ =¢, =0.
bil f2 In
fi f fa
Wronskian: W(zx) = . : :
fl(n.fl) 2(77,'71) 7(Lnlfl)

The Wronskian of n linearly dependent functions fi,--- , f, is identically zero.

\. J

2nd Order, Homogeneous Linear, Constant Coefficients \

2nd Order, Homogeneous Linear, %}vlmj 20| -‘1‘-[3 /D

Constant Coefficients:
Foll 20(8 §¢

ay” +by' +cy=0

Characteristic Equation: ar’ +br+c¢=0

Solution depends on the type of roots:

e r = r1,ro(real, not repeated),

Yy = c1e"* + cpe”?".

e r =711 =ry (repeated root),
y = (c1 + cox)e™?.

e r =712 = A+ Bi(complex conjugates),
y = e/ (¢1 cos Bz + ¢ sin Bx)




Higher Order, Homogeneous Linear, Constant Coefficients

Higher Order, Homogeneous Linear,

Constant Coefficients: any™ + - 4+ a1y +ay =0

Characteristic Equation: apr™ -+ a1r+ag =0

E . §rnn5 200948,

Sf)f}vllj 20]¢ #B
e Long division method can be used when solving 'char’ eqn. Fal] 2017 #/>

\ J

il e Ej S‘gr,nj 2019 #é IS ymj 20[% # |2

Consider
y +q(z)y =0,

e Solution generalized from 2nd order case.

y' +p(z
with one solution y = y; (z) known.

y = vy
y' =gl + 'y

y" = vl + 20"y + 0"y

Substitute:

Diff. E. becomes 20"y +v"y1) + pv'y1 =0,

=5

Euler Equation: ax?y” +bxy’ +cy =0

which is separable:

Applications:

Differential Equations as Vibrations

m mass
2 +cx’' + kx = F(t) ¢ darppenlng
k spring constant

F(t) forcing function

Free Undamped Motion (¢ = 0 and F(t) = 0)

— General solution x(t) = A coswot + Bsinwgt, where wy = %
— Need to know how to write z(t) = Ccos(wot — «), where C =

VA2 + B? is the amplitude and « is the phase angle. Fy(] 20/¢ #13

Foll 2017 # 0
va'. V\J Do|ls 13

e Free Damped Motion (¢ > 0 and F(¢t) = 0)

— Overdamped (two distinct real roots)
— Critically damped (repeated real roots)
— Underdamped (two complex roots)

The solution can be written as z(t) = Cre P! cos (w1t — ay)

Undamped Forced Oscillations (¢ = 0 and F(t) # 0)

2" + kx = Fy coswt

t) #0)

z(t) = 0 ast — oo

e Damped Forced Oscillations (¢ > 0 and F

— _transient solution () = z. (t)

— steady periodic solution sy () (

— practical resonance: Consider
2" + cx’ + kx = Fycoswt

Practical resonance is the maximum value of C'(w). This may not exist.




\

Solutions to Nonhomogeneous Equations

.Srvu‘vxj 209 #9

Consider the nonhomogeneous equation
Y™+ pr(x)y Y+ 4 pai(@)y + pa(2)y = fl2)
with homogeneous solution y. = c1y1(x) + - - - + cpyn known.
Then the general solution is y = y. + vy, where y, is a particular solution.

Undetermined Coefficients: Spring 20/¢ #9  Fol| )0]?# lo, Fall 2018 #ix
The general nonhomogeneous n th-order linear equation with constant coefficients

Foll 2017 #I>

any™ + an_1y" "V 4+t ary +agy = f(z)

Find y, by guessing a form and then plugging into DE (2*® is chosen so that y;’s
are not terms of y..)

f(z) Yp
P =bo + by + -+ 4 bya™ 2 (Ao + Avz + Agz® + - 4 Ajpa™)
acoskx + bsin kz z°(Acoskx + Bsinkx)
e"*(acoskx + bsin kz) x°e"*(Acoskx + Bsinkx)
P (z)e"™ z® (Ao + Az + Asx® + - + Amxm) e
P (2)(acoskx + bsinkx) | 2°[(Ao + Az + Asx® + -+ A;pz™) cos kx
+(Bo + Bix 4 Bax® + -+ - 4+ Byxz™) sin k]

Variation of Parameters:

v+ Py +Q2)y = f(2)
homogeneous solution y.(x) = c1y1(x) + c2y2(x) known.

SFY;V\J 20/gH 14

0 ]
(@) Y

Fol| 2005 1

Then a particular solution is

Wronskian: W (z) = y1y5 — Y2y

Remark: Let uy = — [ Mdm and up = fwdm then the above equation
becomes

Yp(z) = wry1 + u2y2

The Method of Elimination N\

[— —
v . 3z —dy , and other examples in Lecture Notes in 4.2.
y =2x+y

Fol 2018 417

Examples: {
, show solutions are ellipses. See Notes in 4.1.

, show solutions are hyperbolas. See Notes in 4.1.

Constant Coeff. Homogeneous System:

—

%
X _ Az
a0

foll 20(9 # /4

Constant Coeff. Homogeneous:

)2261)21+62i2+"',

where X; are fundamental solutions
from eigenvalues & eigenvectors.
The method is described as below.

Solution:

The Eigenvalue Method for Homogeneous Systems:
The number A is called an eigenvalue of the matrix A if |A — A\I| = 0.

An eigenvector associated with the eigenvalue A is a nonzero vector v such that
(A-X)V=0.

We consider A to be 2 x 2, then the general solution is X(t) = ¢1X1(t) 4+ caXa(t),
with the fundamental solutions X (t), X2(¢) found has follows. 2019 # 17

e Distinct Real Eigenvalues. %;(t) = Vet %y(t) = vpet??

e Complex Eigenvalues. A1 2 = ptqi. (suggestion: use an example to remem-
ber the method)

If ¥ =a-+ibis an eigenvector associated with A = p + ¢i, then Sf"“" 20l7 %20

X (t) = ePt (é’cos qt — bsin qt), Z(t) = ePt (b cos gt 4 @ sin qt) Foll 2018 (8

e Defective Eigenvalue with multiplicity 2.
Find nonzero ¥, and ¥; such that (A — AI)?>¥; = 0 and (A — M)V,
Then )?1 (t) = \716/\15 ig (t) = (\_;125 + Vg) e’\t.

o
= V1.

\ SOY;Y\O )Ol? #




Phase Portraits 1 SEY\'V‘S 2019 #lé Qrﬁnj 20|8 # 2

Gallery of Typical Phase Portraits for the System x’ = Ax: Nodes

Proper Nodal Source: A repeated posi-
tive real eigenvalue with two linearly in-
dependent eigenvectors.

Proper Nodal Sink: A repeated negative
real eigenvalue with two linearly indepen-
dent eigenvectors.
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Improper Nodal Source: Distinct positive real eigenvalues (left) or a repeated positive real
eigenvalue without two linearly independent eigenvectors (right).
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Improper Nodal Sink: Distinct negative real eigenvalues (left) or a repeated negative real
eigenvalue without two linearly independent eigenvectors (right).

Phase Portraits 2

Gallery of Typical Phase Portraits for the System x’ = Ax:
Saddles, Centers, Spirals, and Parallel Lines

!’
y/
4
!

Saddle Point: Real eigenvalues of oppo-
site sign.

Spiral Sink: Complex conjugate eigen-

Spiral Source: Complex -conjugate
i values with negative real part.

eigenvalues with positive real part.
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Parallel Lines: One zero and one neg- Parallel Lines: A repeated zero eigen-
ative real eigenvalue. (If the nonzero value without two linearly independent
eigenvalue is positive, then the trajecto- eigenvectors.

ries flow away from the dotted line.)
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Matrix Exponentials and Linear Systems

Fundamental Matrix:
| \ |

(1) = X1|(f) Xz‘(t) e Xa(t)

—

Exponential matrix: e® :I—|—A—|—A2‘—!2_|_..._|_AT;" 4+
eAt = &(1)®(0) !
Matrix Exponential Solutions:

Consider
x' = Ax, x(0) = xo,

then the solution is x(t) = eAtxy = ®(t)®(0)"xq.

dx
where X; are fundamental solutions to the system o AX.

Fall 2019 # 3

Nonhomogeneous Linear Systems

Consider

srfmJ 20/8 #20
Foll 2017 #I¢

Fall 20Ig #2120

If £(¢) is a linear combination (with constant vector coefficients) of products of
polynomials, exponential functions, and sines and cosines. We can make a guess
to the general form of a particular solution X,.

X' = AX +f(t),

—

a general solution X(t) = X.(t) + X, (1).

Undetermined Coefficients

See illustrative examples from Lecture Notes Section 5.7.

Variation of Parameters

e Consider .
X' =P(t)xX+£(1),

Then a particular solution is given by

x,(t) = @(t)/@(t)—lf(t)dt,

where ®(t) is a fundamental matrix for the homogeneous system x’ = P(t)x.

e In particular, for the initial value problem
% = AX+1(t), %(0) =%

Then the solution is given by

¢
R(t) = ARy + eAt/ e A (s)ds
0

Recall eA! = &(t)®(0) L.

—1
e Recall the inverse of 2 x 2 matrix: { Z Z } : { . }




Laplace Transforms
Definition:  £{f(t)} = / e F(t)dt

0
Properties:

e Transform of derivatives:

L{z} =X, L{2'}=5X—12(0)
L{z"} = s*°X — s2(0) — 2/(0)
L{z"} = s3X — s%2(0) — s2’(0) — 2”(0)

)dT} =

Translation on the s-Axis: £{e f(t)} = F(s —a)

F
Transforms of Integrals: £ {fot f( (5)
s

Differentiation of Transforms: Fall)olg # |18

L{-tf(t)} = F'(s) and L{t"f(t)} = (=1)"F"™(s), n=1,2,3,...
g 201 41
e Integration of Transforms: £ {fit)} = [Z F(o)do ?mj 02 oHE
rng 20
. ' P HISHIT
e Translation on the t-Axis: L{u(t — a)f(t —a)} =e *F(s) Foll 2009 # b
e Laplace Transform of §(t —c): L{d(t—c)} =e " (c>0) | F
G ring 0 H 1|l Tt olq g | FIIE Al
e Convolutions: Foall 2012 #17

all 201R #lbt

— Definition: (f x g)(t) = A frgt—7)dr

— Property: L{f(t) x g(t)} = L{F(D)} - L{g(t)}

. Sprrmg—2Of /> J
Sfyfﬂ 20[? #[é
Fall >0/ #19
Fanl 20(8 #18
Fall 201 3#17

Laplace Transforms of Basic Functions

The following is the usual table of Laplace transforms provided at the end of the
exam.

f(t) = LHF(s)} F(s)=L{f(t)}
1. 1 %
2. et 1
s—a
3. ¢ S:—+'1
F'(p+1)
4. t? (p>-1) pres
5. sin at 52;#(12
6. cos at 82~|—;(12
7. sinh at 52%¢a2
8. cosh at ﬁ
. b
9. e sin bt m
10. e? cos bt ﬁ
n  at n!
11. t"e m
12, wlt) = WH-¢) "’:s
13. uc(t) f(t — ) e “F(s)
14. et f(t) F(s—c¢)
15. F(et) %F (Z) ,c>0
t
16. / Ft—7)g(r)dr F(s) G(s)
0
17. §(t—c) = Sr_ t) e
18 7) SF(s) = "L (0) = - = £ D(0) - (o)
9. (-0 Fi(s)




