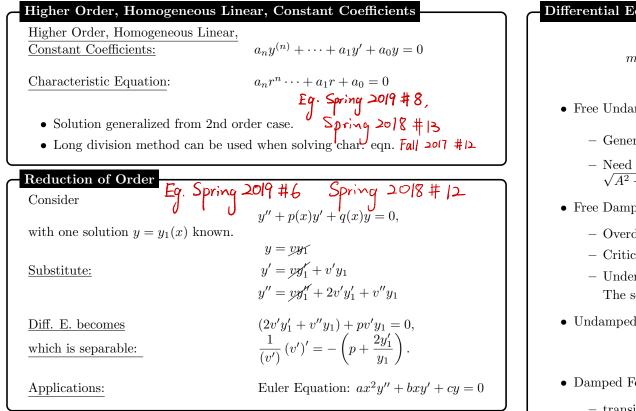

Review of Common Ordinary Differential Equations


– Separable Equation	S
Separable Equations:	$\frac{dy}{dx} = g(x)k(y) \qquad \qquad$
Solution:	$\int \frac{dy}{k(y)} = \int g(x) dx + C \text{Spring 2015 #} $
	Also check if $k(y) = 0$ is a solution
Applications:	Newton's law of cooling: $\frac{dT}{dt} = k(A - T)$
	Logistic equations: $\frac{dP}{dt} = kP(M - P) = aP - bP^2$
Linear First-order H	Ey: Spring 2019 #1, Spring 2018 #6
Linear First-order Eq	$\frac{\text{dations.}}{dx} = \frac{1}{dx} + F(x)y = Q(x) + \frac{1}{dx} + \frac{1}{d$
Solution:	$\rho u = \int \rho Q(x) dx$, where $\rho = e^{\int P(x) dx}$.
Applications:	Mixture Problems: $\frac{dx}{dt} = r_i c_i - r_o c_o$,
Fal	Mixture Problems: $\frac{dx}{dt} = r_i c_i - r_o c_o,$ $\downarrow \mathbf{x}$ where $c_o(t) = \frac{x(t)}{V(t)}, V(t) = V_0 + (r_i - r_0) t$
Fall	where $C_o(t) = \frac{1}{V(t)}$, $V(t) = V_0 + (V_1 - V_0)t$
Exact Equations	2. Spring 2019 # 4 Spring 2018 #7 Fall 2019 #5
V	
Exact Equations: M	$I(x,y)dx + N(x,y)dy = 0$, where $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$.
Solution: F	$(x,y) = C$ such that $\frac{\partial F}{\partial x} = M$ and $\frac{\partial F}{\partial y} = N$.
Homogeneous Equa	tions
Homogeneous Equation	dy (y) Spring 2018 #S
To identify:	All $x^n y^m$ have total power $(n+m)$ the same (after

rewriting).

Solution:

Substitute $v = \frac{y}{x}$, then $\frac{dy}{dx} = v + x \frac{dv}{dx}$ (This converts equation to a separable Diff. E.)

– Bernoulli Equations –		Euler's Method Fall 2019 #7, Fall 2018 #5
$\frac{\text{Bernoulli Equations:}}{\frac{dy}{dx}} + \frac{dy}{dx} + $	Fall اود اله $P(x)y = Q(x)y^n$	<u>Euler's Method:</u> Consider $\frac{dy}{dt} = f(x, y), f(x_0) = y_0$
	$y' + P(x)y^{1-n} = Q(x)$	Euler's method with step size h: $\begin{cases} ax \\ x_{n+1} = x_n + h \\ y_{n+1} = y_n + h \cdot f(x_n, y_n) \end{cases}$
$\underbrace{ \begin{array}{c} \underline{\text{Solution}} \\ (\text{This}) \end{array} }_{\text{(This})}$	$y = v$ and $y^{-n}y' = \frac{1}{1-n}v'$ s converts equation to a linear Diff. E.)	Existence and Uniqueness Theorem First Order, General Initial Value Problem: $f_{g}: Spring \ge 0/9 \# f_{g}$ $y' = f(x, y), y(x_{0}) = y_{0}$
Reducible Second-order Equ Reducible Second-order Equ Case 1. y missing:		 Solution exists and is unique if f and \$\frac{\partial}{\partial y}f\$ are continuous at \$(x_0, y_0)\$. Solutions are defined somewhere inside the region containing \$(x_0, y_0)\$, where f and \$\frac{\partial}{\partial y}f\$ are continuous.
Case 2. x missing:	Substitute: $p = y' = \frac{dy}{dx}$, $y'' = p\frac{dp}{dy}$.	Linearly Independent Functions f_1, \dots, f_n are linearly independent if $c_1f_1 + \dots + c_nf_n = 0$ holds if and only if $c_1 = c_2 = \dots = c_n = 0$.
Population Models This topic was covered in Sec • Solving the Logistic Eq • How solution curves bel See illustrative examples from	uations. have near the equilibrium solutions	Wronskian: $W(x) = \begin{vmatrix} f_1 & f_2 & \cdots & f_n \\ f'_1 & f'_2 & \cdots & f'_n \\ \vdots & \vdots & & \vdots \\ f_1^{(n-1)} & f_2^{(n-1)} & \cdots & f_n^{(n-1)} \end{vmatrix}$. The Wronskian of n linearly dependent functions f_1, \cdots, f_n is identically zero .
tions for examples.	ction 2.3. See the lecture notes and homework ques- and Equilibrium Solutions $ \frac{dx}{dt} = f(x) $ Fall 2018 #7 values of x such that $f(x) = 0$. Fall 2017 #1 $f(x_0) = 0 \Rightarrow$ equilibrium solution at $x = x_0$ $f(x_0) < 0 \Rightarrow$ solutions go down at $x = x_0$ Spring 2015.	
Stability of Critical Points:	$f(x_0) > 0 \Rightarrow$ solutions go up at $x = x_0$ Phase diagram method unstable = solutions go away (either side) stable = solutions go towards (both sides) semi-stable = solutions mixed	• $r = r_1 = r_1$ (repeated root), $y = (c_1 + c_2 x)e^{r_1 x}$. • $r = r_{1,2} = A \pm Bi$ (complex conjugates), $y = e^{Ax} (c_1 \cos Bx + c_2 \sin Bx)$

Differential Equations as Vibratio	ns	
$mx'' + cx' + kx = F(t) \begin{cases} \\ \\ \end{cases}$	$ \begin{array}{ll} m & \text{mass} \\ c & \text{dampening} \\ k & \text{spring constant} \\ F(t) & \text{forcing function} \end{array} $	
• Free Undamped Motion ($c = 0$ and	1 F(t) = 0)	
- General solution $x(t) = A \cos t$	$\omega_0 t + B \sin \omega_0 t$, where $\omega_0 =$	$\sqrt{\frac{k}{m}}$.
- Need to know how to writ $\sqrt{A^2 + B^2}$ is the amplitude a	e $x(t) = C \cos(\omega_0 t - \alpha)$, nd α is the phase angle. Fall	where C = 20/5 井/3
• Free Damped Motion $(c > 0 \text{ and } F(t) = 0)$ Spring 2015 #13		
 Overdamped (two distinct re Critically damped (repeated 		'
– Underdamped (two complex	roots)	
The solution can be written a		1)
\bullet Undamped Forced Oscillations (c	$= 0 \text{ and } F(t) \neq 0$	
mx'' +	$kx = F_0 \cos \omega t$	
• Damped Forced Oscillations ($c >$) and $F(t) \neq 0$)	
$- \underline{\text{transient solution}} x_{tr}(t) = \underline{x_c}$ $- \underline{\text{steady periodic solution}} x_{sp}(t)$ $- \underline{\text{practical resonance: Consider}}$	$) = x_p(t)$	
mx'' +	$cx' + kx = F_0 \cos \omega t$	
Practical resonance is the ma	ximum value of $C(\omega)$. This m	nay not exist.

Solutions to Nonhomogeneous Equations

Consider the nonhomogeneous equation $y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_{n-1}(x)y' + p_n(x)y = f(x)$ with homogeneous solution $y_c = c_1y_1(x) + \dots + c_ny_n$ known. Then the general solution is $y = y_c + y_p$, where y_p is a particular solution.

Undetermined Coefficients: Spring 2018 # 9 Fall 2019 # 10, Fall 2018 # 12. The general nonhomogeneous *n* th-order linear equation with constant coefficients Fall 2017 # 12

 $a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_1 y' + a_0 y = f(x)$

Find y_p by guessing a form and then plugging into DE (x^s is chosen so that y_i 's are not terms of y_c)

f(x)	y_p
$P_m = b_0 + b_2 x + \dots + b_m x^m$	$x^s \left(A_0 + A_1 x + A_2 x^2 + \dots + A_m x^m \right)$
$a\cos kx + b\sin kx$	$x^s(A\cos kx + B\sin kx)$
$e^{rx}(a\cos kx + b\sin kx)$	$x^s e^{rx} (A\cos kx + B\sin kx)$
$P_m(x)e^{rx}$	$x^{s} (A_{0} + A_{1}x + A_{2}x^{2} + \dots + A_{m}x^{m}) e^{rx}$
$P_m(x)(a\cos kx + b\sin kx)$	$x^{s}[(A_{0} + A_{1}x + A_{2}x^{2} + \dots + A_{m}x^{m})\cos kx$
	$+(B_0+B_1x+B_2x^2+\cdots+B_mx^m)\sin kx]$

Variation of Parameters:

y'' + P(x)y' + Q(x)y = f(x)homogeneous solution $y_c(x) = c_1y_1(x) + c_2y_2(x)$ known. Then a particular solution is $y_p(x) = -y_1(x) \int \frac{y_2(x)f(x)}{W(x)} dx + y_2(x) \int \frac{y_1(x)f(x)}{W(x)} dx$ Fall 2018 #9

Fall 2015 #12

Wronskian: $W(x) = y_1 y'_2 - y_2 y'_1$.

Remark: Let $u_1 = -\int \frac{y_2(x)f(x)}{W(x)} dx$ and $u_2 = \int \frac{y_1(x)f(x)}{W(x)} dx$, then the above equation becomes $y_p(x) = u_1y_1 + u_2y_2$

The Method of Elimination

Examples:
$$\begin{cases} x' = -3x - 4y \\ y' = 2x + y \end{cases}$$
, and other examples in Lecture Notes in 4.2.
$$\begin{cases} x' = -2y \\ y' = \frac{1}{2}x \end{cases}$$
, show solutions are ellipses. See Notes in 4.1.
$$\begin{cases} x' = y \\ y' = 2x \end{cases}$$
, show solutions are hyperbolas. See Notes in 4.1.

Constant Coeff. Homogeneous System:

 $\underline{\text{Constant Coeff. Homogeneous:}} \quad \frac{d\vec{\mathbf{x}}}{dt} = \mathbf{A}\vec{\mathbf{x}}$

Fall 2019 #14

Solution:

 $\vec{\mathbf{x}} = c_1 \vec{\mathbf{x}}_1 + c_2 \vec{\mathbf{x}}_2 + \cdots,$ where $\vec{\mathbf{x}}_i$ are fundamental solutions from eigenvalues & eigenvectors. The method is described as below.

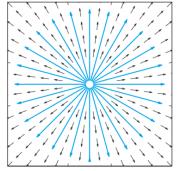
The Eigenvalue Method for Homogeneous Systems:

The number λ is called an *eigenvalue* of the matrix **A** if $|\mathbf{A} - \lambda \mathbf{I}| = 0$.

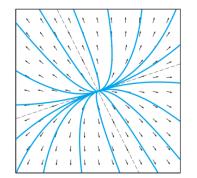
An *eigenvector* associated with the eigenvalue λ is a nonzero vector \mathbf{v} such that $(\mathbf{A} - \lambda \mathbf{I})\vec{\mathbf{v}} = \vec{\mathbf{0}}$.

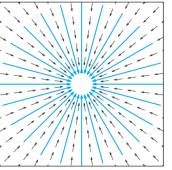
We consider **A** to be 2 × 2, then the general solution is $\vec{\mathbf{x}}(t) = c_1 \vec{\mathbf{x}}_1(t) + c_2 \vec{\mathbf{x}}_2(t)$, with the fundamental solutions $\vec{\mathbf{x}}_1(t), \vec{\mathbf{x}}_2(t)$ found has follows.

- Distinct Real Eigenvalues. $\vec{\mathbf{x}}_1(t) = \vec{\mathbf{v}}_1 e^{\lambda_1 t}, \vec{\mathbf{x}}_2(t) = \vec{\mathbf{v}}_2 e^{\lambda_2 t}$
- Complex Eigenvalues. $\lambda_{1,2} = p \pm qi$. (suggestion: use an example to remember the method)

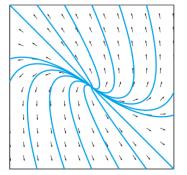

If $\vec{v} = \vec{a} + i\vec{b}$ is an eigenvector associated with $\lambda = p + qi$, then Spring 2019 #20 $\vec{x}_1(t) = e^{pt} \left(\vec{a} \cos qt - \vec{b} \sin qt \right), \ \vec{x}_2(t) = e^{pt} (\vec{b} \cos qt + \vec{a} \sin qt)$ Fall 2018 #18

• Defective Eigenvalue with multiplicity 2. Find nonzero $\vec{\mathbf{v}}_2$ and $\vec{\mathbf{v}}_1$ such that $(\mathbf{A} - \lambda \mathbf{I})^2 \vec{\mathbf{v}}_2 = \mathbf{0}$ and $(\mathbf{A} - \lambda \mathbf{I}) \vec{\mathbf{v}}_2 = \vec{\mathbf{v}}_1$. Then $\vec{\mathbf{x}}_1(t) = \vec{\mathbf{v}}_1 e^{\lambda t}$, $\vec{\mathbf{x}}_2(t) = (\vec{\mathbf{v}}_1 t + \vec{\mathbf{v}}_2) e^{\lambda t}$. Solving 2018 #19

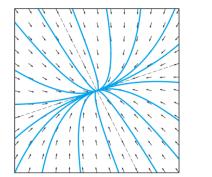

Phase Portraits 2

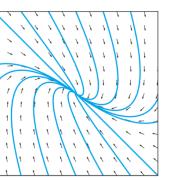

Phase Portraits 1 Spring 2019 #16 Spring 2018 #18

Gallery of Typical Phase Portraits for the System x' = Ax: Nodes

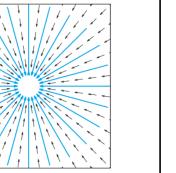


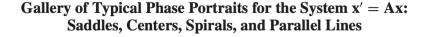
Proper Nodal Source: A repeated positive real eigenvalue with two linearly independent eigenvectors.

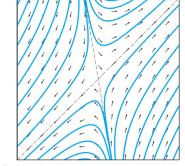


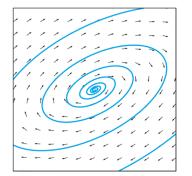


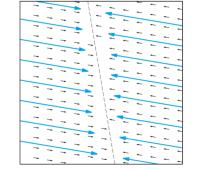
Proper Nodal Sink: A repeated negative real eigenvalue with two linearly independent eigenvectors.

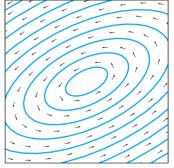


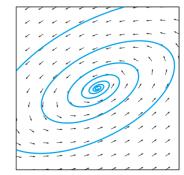

Improper Nodal Source: Distinct positive real eigenvalues (left) or a repeated positive real eigenvalue without two linearly independent eigenvectors (right).

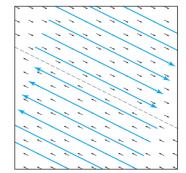



Improper Nodal Sink: Distinct negative real eigenvalues (left) or a repeated negative real eigenvalue without two linearly independent eigenvectors (right).




Saddle Point: Real eigenvalues of opposite sign.


Spiral Source: Complex conjugate eigenvalues with positive real part.


Parallel Lines: One zero and one negative real eigenvalue. (If the nonzero eigenvalue is positive, then the trajectories flow away from the dotted line.)

Center: Pure imaginary eigenvalues.

Spiral Sink: Complex conjugate eigenvalues with negative real part.

Parallel Lines: A repeated zero eigenvalue without two linearly independent eigenvectors.

Matrix Exponentials and Linear Systems

Fundamental Matrix:

$$\mathbf{\Phi}(t) = \begin{bmatrix} | & | & | & | \\ \mathbf{x}_1(t) & \mathbf{x}_2(t) & \cdots & \mathbf{x}_n(t) \\ | & | & | & | \end{bmatrix}$$
 Foll $\mathbf{Lol9} \ddagger \mathbf{13}$

 where \mathbf{x}_i are fundamental solutions to the system $\frac{d\mathbf{x}}{dt} = \mathbf{A}\mathbf{x}$.
 $\mathbf{Exponential matrix:}$
 $e^{\mathbf{A}} = \mathbf{I} + \mathbf{A} + \frac{\mathbf{A}^2}{2!} + \cdots + \frac{\mathbf{A}^n}{n!} + \cdots$,

 $e^{\mathbf{A}t} = \mathbf{\Phi}(t)\mathbf{\Phi}(0)^{-1}$
 \mathbf{A}
 \mathbf{A}

 Matrix Exponential Solutions:
 $\mathbf{X}' = \mathbf{A}\mathbf{x}, \quad \mathbf{x}(0) = \mathbf{x}_0,$

then the solution is $\mathbf{x}(t) = e^{\mathbf{A}t}\mathbf{x}_0 = \mathbf{\Phi}(t)\mathbf{\Phi}(0)^{-1}\mathbf{x}_0.$

Nonhomogeneous Linear SystemsSpring 20/9 # 18Consider $\vec{\mathbf{x}}' = \mathbf{A}\vec{\mathbf{x}} + \vec{\mathbf{f}}(t),$ Spring 20/9 # 18a general solution $\vec{\mathbf{x}}(t) = \vec{\mathbf{x}}_c(t) + \vec{\mathbf{x}}_p(t).$ Spring 20/9 # 18Undetermined CoefficientsFall 20/9 # 15Fall 20/9 # 15Fall 20/9 # 15

If $\mathbf{f}(t)$ is a linear combination (with constant vector coefficients) of products of polynomials, exponential functions, and sines and cosines. We can make a guess to the general form of a particular solution \mathbf{x}_p .

See illustrative examples from Lecture Notes Section 5.7.

Variation of Parameters

• Consider

$$\vec{\mathbf{x}}' = \mathbf{P}(t)\vec{\mathbf{x}} + \vec{\mathbf{f}}(t),$$

Then a particular solution is given by

$$\mathbf{x}_p(t) = \mathbf{\Phi}(t) \int \mathbf{\Phi}(t)^{-1} \mathbf{f}(t) dt,$$

where $\mathbf{\Phi}(t)$ is a fundamental matrix for the homogeneous system $\mathbf{x}' = \mathbf{P}(t)\mathbf{x}$.

• In particular, for the initial value problem

$$\vec{\mathbf{x}}' = \mathbf{A}\vec{\mathbf{x}} + \vec{\mathbf{f}}(t), \quad \vec{\mathbf{x}}(0) = \vec{\mathbf{x}}_0$$

Then the solution is given by

$$\vec{\mathbf{x}}(t) = e^{\mathbf{A}t}\vec{\mathbf{x}}_0 + e^{\mathbf{A}t}\int_0^t e^{-\mathbf{A}(s)}\vec{\mathbf{f}}(s)ds$$

Recall $e^{\mathbf{A}t} = \mathbf{\Phi}(t)\mathbf{\Phi}(0)^{-1}$.

• Recall the inverse of 2×2 matrix: $\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$

Laplace Transforms

$$\underline{\text{Definition:}} \quad \mathcal{L}\{f(t)\} = \int_0^\infty e^{-st} f(t) dt$$

Properties:

• Transform of derivatives:

$$\begin{split} \mathcal{L}\{x\} &= X, \quad \mathcal{L}\{x'\} = sX - x(0) \\ & \mathcal{L}\{x''\} = s^2X - sx(0) - x'(0) \\ & \mathcal{L}\{x'''\} = s^3X - s^2x(0) - sx'(0) - x''(0) \end{split}$$

- Transforms of Integrals: $\mathcal{L}\left\{\int_{0}^{t} f(\tau)d\tau\right\} = \frac{F(s)}{s}$
- Translation on the s-Axis: $\mathcal{L}\left\{e^{at}f(t)\right\} = F(s-a)$
- Differentiation of Transforms: Fall>08 # 18 $\mathcal{L}\{-tf(t)\} = F'(s) \text{ and } \mathcal{L}\{t^n f(t)\} = (-1)^n F^{(n)}(s), \quad n = 1, 2, 3, \dots$ (Spring 2019 #10.#15 Spring 2018 #15 #15

Fall 2018 #14

- Integration of Transforms: $\mathcal{L}\left\{\frac{f(t)}{t}\right\} = \int_{s}^{\infty} F(\sigma) d\sigma$
- Translation on the *t*-Axis: $\mathcal{L}{u(t-a)f(t-a)} = e^{-as}F(s)$ Fall 2019 # 17

• Laplace Transform of
$$\delta(t-c)$$
: $\mathcal{L} \{\delta(t-c)\} = e^{-cs}$ $(c \ge 0)$
• Convolutions: Fall $\mathfrak{20}$ $\mathfrak{1}$ $\mathfrak{1}$

Convolutions: Fall 2018 #16 - <u>Definition</u>: $(f * g)(t) = \int_{0}^{t} f(\tau)g(t - \tau) d\tau$

 $- \underline{\text{Property:}} \mathcal{L}\{f(t) * g(t)\} = \mathcal{L}\{f(t)\} \cdot \mathcal{L}\{g(t)\}$

Laplace Transforms of Basic Functions

The following is the usual table of Laplace transforms provided at the end of the exam.

	$f(t) = \mathcal{L}^{-1}\{F(s)\}$	$F(s) = \mathcal{L}\{f(t)\}$
1.	1	$\frac{1}{s}$
2.	e^{at}	$\frac{1}{s-a}$
3.	t^n	$rac{n!}{s^{n+1}}$
4.	$t^p \ (p > -1)$	$\frac{\Gamma(p+1)}{s^{p+1}}$
5.	$\sin at$	$rac{a}{s^2+a^2}$
6.	$\cos at$	$rac{s}{s^2+a^2}$
7.	$\sinh at$	$rac{a}{s^2-a^2}$
8.	$\cosh at$	$\frac{s}{s^2-a^2}$
9.	$e^{at}\sin bt$	$\frac{b}{(s-a)^2+b^2}$
10.	$e^{at}\cos bt$	$\frac{s-a}{(s-a)^2+b^2}$
11.	$t^n e^{at}$	$\frac{n!}{(s-a)^{n+1}}$
12.	$u_c(t) = \mathcal{U} (t)$	$-c)$ $\frac{e^{-cs}}{s}$
13.	$u_c(t)f(t-c)$	$e^{-cs}F(s)$
14.	$e^{ct}f(t)$	F(s-c)
15.	f(ct)	$\frac{1}{c} F\left(\frac{s}{c}\right), \ c > 0$
16.	$\int_0^tf(t-\tau)g(\tau)d\tau$	F(s)G(s)
17.	$\delta(t-c) = \int_{c} (-c) dt$	t) e^{-cs}
18.	$f^{(n)}(t)$	$s^{n}F(s) - s^{n-1}f(0) - \dots - sf^{(n-2)}(0) - f^{(n-1)}(0)$
19.	$(-t)^n f(t)$	$F^{(n)}(s)$